RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2013

FIRST YEAR

CHEMISTRY (Honours)

Date : 16/12/2013 Time : 11 am – 1 pm

Paper : I

Full Marks : 25

[2]

[1]

[1]

[1]

<u>Group - C</u>

[Answer <u>one</u> question from each unit]

<u>Unit - I</u>

- 1. a) ¹⁸F is found to undergo 90% radioactive decay in 366 min, what will be its half life?
 - b) i) State the uncertainty principle and explain uncertainties in energy and time situations.
 ii) What will be the uncertainty in the location of a photon of wavelength 5000Å, if the wave
 - length is known to have accuracy of 1 part in a million?[1+2+2]c) Find the ground state term symbol for chromium atom.[2]
 - d) $_{92}^{238}$ U by successive radioactive decays change to $_{82}^{206}$ Pb. A sample of uranium ore was analysed and found to contain 1.0g of $_{92}^{238}$ U and 0.1g of $_{82}^{206}$ Pb. Assuming that all $_{82}^{206}$ Pb had been formed due to decay of $_{92}^{238}$ U find the age of the uranium ore. Given $t_{1/2}$ of $_{92}^{238}$ U = 4.5×10^9 years. [3]
 - e) What do you mean by radioactive wastes?

2.	a)	What do you mean by radial distribution function? Show diagramatically the variation of rad	ial
		distribution function with 'r' for the orbitals 3s, 3p and 3d giving significance of each curve.	[1+3]

- b) Justify the value of Ionisation energy of 13.6 ev for hydrogen atom.
- c) What is nuclear isomerism? Give an example.
- d) Show that the de Broglie wavelength, λ , of the electron wave in the nth orbit of hydrogen atom can be represented as $\lambda = 2\pi na_0$ where a_0 is the radius of the first Bohr orbit in a hydrogen atom. [4]
- e) Explain the term 'Exchange Energy' on the basis of Hund's rule. Calculate the exchange energy for d⁶ system. [1.5+1.5]

<u>Unit - II</u>

3. a) Although ionisation energy increases across any period, the first ionisation energy of B is smaller than that of Be. [2] b) Define Allred-Rochow electronegativity and state its relation with Pauling's electronegativity scale. [3] c) Lithium is sometime referred to as 'super alkali' metal and fluorine is referred to as 'super halogen' —Justify. [3] d) Explain the following : [2+2]i) Zr and Hf often coexist, however their separation is very difficult. ii) Amongst Cu, Ag and Au, formation of Auride is known. 4. a) 'There is a large decrease in electron affinity between Li and Be despite the increase in nuclear charge' - Explain. [2] b) Comment on the oxidation state of $T\ell$ in $T\ell I_3$. [1] c) Giving reasons, arrange the following ions in order of decreasing size : H^- , F^- , CI^- , Br^- and Γ . [2] d) Calculate the Allred-Rochow electronegativity value of fluorine using Slater's rule. Given F-F bond distance is 1.413 Å. [2] e) Why do the transition metals show variable valency? [2] f) Write down the limitations of Slater's rule. [1] g) Write notes on Pauling's Univalent radii. [2]